Twitter
Advertisement

Scientists develop shape-shifting material that can morph using heat and light

Scientists have developed a material that can transform into complex, pre-programmed shapes when exposed to light or heat, and may have a broad range applications for robotics, medical devices and artificial muscles.

Latest News
article-main
FacebookTwitterWhatsappLinkedin

Scientists have developed a material that can transform into complex, pre-programmed shapes when exposed to light or heat, and may have a broad range applications for robotics, medical devices and artificial muscles.

The material developed by University of Colorado (CU) Boulder in the US allows a square peg to morph and fit into a round hole before fully reverting to its original form. "The ability to form materials that can repeatedly oscillate back and forth between two independent shapes by exposing them to light will open up a wide range of new applications and approaches to areas such as additive manufacturing, robotics and biomaterials," said Christopher Bowman, a professor at CU Boulder.

Previous efforts have used a variety of physical mechanisms to alter an object's size, shape or texture with programmable stimuli. However, such materials have historically been limited in size or extent and the object state changes have proven difficult to fully reverse.

The material achieves readily programmable two-way transformations on a macroscopic level by using liquid crystal elastomers (LCEs), the same technology underlying modern television displays. The unique molecular arrangement of LCEs make them susceptible to dynamic change via heat and light. 

To solve this, the researchers installed a light-activated trigger to LCE networks that can set a desired molecular alignment in advance by exposing the object to particular wavelengths of light. The trigger then remains inactive until exposed to the corresponding heat stimuli. For example, a hand-folded origami swan programmed in this fashion will remain folded at room temperature. 

When heated to 200 degrees Fahrenheit, however, the swan relaxes into a flat sheet. Later, as it cools back to room temperature, it will gradually regain its pre-programmed swan shape. The ability to change and then change back gives this new material a wide range of possible applications, especially for future biomedical devices that could become more flexible and adaptable than ever before.

Find your daily dose of news & explainers in your WhatsApp. Stay updated, Stay informed-  Follow DNA on WhatsApp.
Advertisement

Live tv

Advertisement
Advertisement