Twitter
Advertisement

Brain protein to block cocaine craving identified

A new study conducted by a team of Indiana University neuroscientists demonstrates that GLT1, a protein that clears glutamate from the brain, plays a critical role in the craving for cocaine that develops after only several days of cocaine use.

Latest News
article-main
FacebookTwitterWhatsappLinkedin

Researchers have identified a key brain protein involved in cocaine addiction.

A new study conducted by a team of Indiana University neuroscientists demonstrates that GLT1, a protein that clears glutamate from the brain, plays a critical role in the craving for cocaine that develops after only several days of cocaine use.

The study showed that when rats taking large doses of cocaine are withdrawn from the drug, the production of GLT1 in the nucleus accumbens, a region of the brain implicated in motivation, begins to decrease. But if the rats receive ceftriaxone, an antibiotic used to treat meningitis, GLT1 production increases during the withdrawal period and decreases cocaine craving.

Ceftriaxone appears to block craving by reversing the decrease in GLT1 caused by repeated exposure to cocaine. In fact, ceftriaxone increases GLT1, which allows glutamate to be cleared quickly from the brain. The Rebec research group localized this effect to the nucleus accumbens by showing that if GLT1 was blocked in this brain region even after ceftriaxone treatment, the rats would relapse.

While an earlier paper of George Rebec, professor in the Department of Psychological and Brain Sciences, showed the effects of ceftriaxone on cocaine craving, the new paper was the first to localize the effects of ceftriaxone to the nucleus accumbens and was the first to show that ceftriaxone works after long withdrawal periods.

"The idea is that increasing GLT1 will prevent relapse. If we block GLT1, the ceftriaxone should not work," Rebec said.

"We now have good evidence that ceftriaxone is acting on GLT1 and that the nucleus accumbens is the critical site.

Ceftriaxone is now in clinical trials on people with ALS, also known as Lou Gehrig's disease, which has many mechanisms in common with other neurodegenerative diseases such as Huntington's disease and Alzheimer's.

The study has been published in The Journal of Neuroscience.

Find your daily dose of news & explainers in your WhatsApp. Stay updated, Stay informed-  Follow DNA on WhatsApp.
Advertisement

Live tv

Advertisement
Advertisement