Twitter
Advertisement

Acoustic resonator device paves the way for better communication

The device achieves an exchange of energy and information between the microwave and mechanical resonator systems in a way that exceeds the dissipation — or diminishing energy — of each of the individual systems to prevent information from getting lost

Latest News
article-main
Schematic of the piezo-electromechanical device. A superconducting resonator (in yellow) is fabricated in a niobium titanium nitride film on a sapphire substrate. The resonator is flipped and suspended on top of an acoustic resonator, which consists of a thin aluminum nitride layer (green) deposited on a thick silicon substrate.
FacebookTwitterWhatsappLinkedin

Yale researchers have developed a high-frequency version of a device known as an acoustic resonator that could advance the field of quantum computing and information processing.

Hong Tang, Yale’s Llewellyn West Jones Jr. Professor of Electrical Engineering & Physics, and his research team, accomplish this with what’s also known as a piezo-optomechanical device. According to a release by the university, the device achieves what is known as “a strong coupling” between two systems: a superconducting microwave cavity and a bulk acoustic resonator system. The results appear in the journal Physical Review Letters.

With a strong coupling, the device achieves an exchange of energy and information between the microwave and mechanical resonator systems in a way that exceeds the dissipation — or diminishing energy — of each of the individual systems. That way, information doesn’t get lost.

A unique feature of the system is that it operates at the very high frequency of 10 gigahertz. An advantage of a high-frequency system is that it allows for a high signal-processing speed.

Another advantage is that the high frequency makes it easier to observe quantum phenomena in experiments. In lower frequency devices, the system has to be cooled to extreme temperatures to overcome thermal noise, which comes from random vibrations from the environment that scramble the signal.

Although the experiments weren’t conducted under quantum conditions, the researchers noted that the high-frequency piezo-electromechanical device is compatible with superconducting qubits — the unit of information analogous to digital bits in conventional computing. That potentially could mean an important step towards hybrid quantum systems, which bridge the world between classical and quantum mechanics, they said.

Find your daily dose of news & explainers in your WhatsApp. Stay updated, Stay informed-  Follow DNA on WhatsApp.
Advertisement

Live tv

Advertisement
Advertisement