Twitter
Advertisement

What’s in the shape? A lot, if it’s of a bird egg

Owls’ are spherical, hummingbirds’ are elliptical and sandpipers’ are pointy.

Latest News
article-main
FacebookTwitterWhatsappLinkedin

Owls’ are spherical, hummingbirds’ are elliptical and sandpipers’ are pointy.

All bird eggs have the same function — to protect and nourish a growing chick. But they come in a brilliant array of shapes. This variety has puzzled biologists for centuries. Now, in the most comprehensive study of egg shapes to date, published Thursday in Science, a team of scientists seems to have found an answer.

The researchers cataloged the natural variation of egg shapes across 1,400 bird species, created a mathematical model to explain that variation, and then looked for connections between egg shape and many key traits of birds. On a global scale, the authors found, one of the best predictors of egg shape is flight ability, with strong fliers tending to lay long or pointy eggs.

In the new study, the authors conducted a multistep investigation that brought together biology, computer science, mathematics and physics. They first wrote a computer program, named Eggxtractor (who says scientists have no sense of humour?), that classified eggs based on their ellipticity and asymmetry. Elliptical eggs are elongated and round on both ends, like cucumbers, and asymmetric eggs are pointier on one end, like mangoes.

With Eggxtractor, the researchers plotted nearly 50,000 eggs, representing all major bird orders, from a database of digital images by the Museum of Vertebrate Zoology in Berkeley, California.

“We could see then that egg shapes varied from spherical, to elliptical, to very pointy, to almost everything in between,” said Mary Caswell Stoddard, an assistant professor of ecology and evolutionary biology at Princeton University and the lead author of the study.

Next, the researchers attempted to answer how eggs might acquire varying shapes. Rather than looking at the shell, as one might expect, they focused on the egg’s membrane (the film you see when peeling a hard-boiled egg), which is essential to the egg’s shape.

The scientists identified two parameters that could influence egg form: variations in the membrane’s composition and differences in pressure applied to the membrane before the egg hatches.

By adjusting these two parameters, “we were able to completely recover the entire range of observed avian egg shapes” — a good test of the model, said L Mahadevan, a professor of applied math, biology and physics at Harvard University and an author of the study.

But when the authors related egg shape to other variables, they were surprised to find that none of them fit on a global scale (though they may still play important roles on smaller scales). Instead, egg shape was strongly correlated with a measure of wing shape, called the hand-wing index, that reflects flight ability.

So what connects flight to egg shape? “Perhaps, evolutionarily, birds stumbled upon this very natural, geometric solution, which is to increase the ellipticity and asymmetry of their eggs,” Mahadevan said, since doing so allows for greater volume without increasing girth.

Ultimately, this study shows that “we can challenge old assumptions,” Stoddard said. “In something as familiar and common as a bird egg, we are still discovering new truths.”

STEPH YIN
is a science writer and contributor to New York Times

Find your daily dose of news & explainers in your WhatsApp. Stay updated, Stay informed-  Follow DNA on WhatsApp.
Advertisement

Live tv

Advertisement
Advertisement